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Abstract--The direction and magnitude of the shear stress in a generally-oriented plane can be found graphically 
by decomposing the three-dimensional stress tensor into a hydrostatic component, a uniaxial compression and a 
uniaxial tension. 

~TRODUCTION 

LISLE (1989) has described a new stereographic method 
for finding the direction of shear stress on a generally- 
oriented plane in three dimensions, when the principal 
stresses are known. This note describes yet another 
method, about as simple as Lisle's, which yields the 
magnitudes and directions of the shear and normal 
stresses, and the sense of the shear stress. Lisle's method 
and the present one are both easier to use than earlier 
published methods (references in Lisle 1989). An 
unpublished construction by Etchecopar (1984), yields 
the direction of the shear stress and is also easy to use. It 
has several features in common with the present method, 
as discussed later. 

PROCEDURE 

Plot an upper-hemisphere projection showing the 
plane of interest, its pole P, and the al and cr 3 principal 
stress directions (Fig. la). An equal-angle, equal-area or 
orthographic projection may be used. 

Rotate the plane to horizontal through its dip angle, 
and its pole to vertical, using the strike line of the plane 
as the axis of rotation. Rotate the cr t and tr 3 directions 
about the same axis, by the same angle (Fig. lb). 

Measure angles 

a = P A c t  t 

b = P A c r  3, 

and calculate the quantities 

rt = (at - a2)cos a sin a 

r3 = (02 - era)COS b sin b, 

where at, a2 and o3 are the magnitudes of the principal 
stresses (positive for compressions). 

I 

Fig. 1. Steps in construction. (a) Geographic orientations of plane of 
interest, its pole P, and the directions of at and 03. Upper-hemisphere 
stereographic (equal-angle) projection. The plane dips 60* towards 
azimuth 070*. at plunges 78* toward 337*; 03 plunges 11" toward 132". 
(b) Projection after rotation of plane to horizontal about its strike 
direction. Angles a and b are 60* and 72", respectively. (The position 
of the North mark on the paper is shown although the plane of 
projection no longer contains the N-S direction.) (c) Components 1"1 
and 1"3 drawn to scale indicated, using 50, 30 and 20 MPa as the 
magnitudes of the principal stresses. (d) Vector addition of l"t and v3 to 
find f, the total shear stress in the plane, and its points in projection r. 
The pitch of 1"is about 86"S. (e) and (f) Restoration of plane and r point 
in it to geographic orientation. ~'plunges at about 59* toward 077*, with 

magnitude of about 9.5 MPa, hangingwall-down. 
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Draw a vector of length rl extending from P away from 
the a I point, and a vector of length r 3 extending from P 
toward the a3 point, using any convenient scale (Fig. lc). 

Add the resulting representations of ~r~ and ~'3 vecto- 
rially to obtain the total stress vector ~-acting in the plane 
(Fig. ld). Extend the ~-arrow to intersect the primitive 
circle, to find the projection point representing the 
direction of • in the plane, and read its pitch if desired 
(Fig. ld). 

Determine the magnitude of efrom its length. Obtain 
the sense of shear of hangingwall-relative-to-footwall by 
noting the direction in which the ~- arrow points. 

Recover the geographic orientation of ~ and read its 
trend and plunge, by rotating the plane, with its included 
7 point, back to the original dip and strike of the plane 
(Figs. le & f). With practice, all these construction steps 
can all be carried out on one piece of tracing paper. 

The normal stress on the plane acts in the direction of 
P and has magnitude 

O" = (0" 1 --  O',)COS2 a + (0' 3 --  02 ) c0s2  b + 02. 

/ 

a 

(c~- or2) a] 

~ A= cos a 

b 

Fig. 2. (a) Diagram corresponding to Fig. l (b) ,  showing the plane of 
interest and the orthogonal  projections (heavy lines) o fa i  anda3 upon 
it, which become the directions of ~-~ and r3. (b) Uniaxial compression 
(o: - a ,)  acting in the a: direction (arrow). The force delivered to the 
plane through a unit cylinder of material,  of magnitude (at - 02), 
becomes spread over  an elliptical area of 1/cos a, giving rise to a stress 
in the Ol direction of (o~ - a2) cos 2a. The component  of this stress 
acting parallel to the plane is r~ and is obtained by multiplication by 

sin a. 

JUSTIFICATION 

The method makes use of a three-way decomposition 
of the stress tensor into a hydrostatic component of 
magnitude az, a uniaxial compression of magnitude 
(a I - a2) and a uniaxial tension of magnitude (o3 - a2). 
These sum to give the total stress as follows (where axes 
xi are chosen parallel to the corresponding principal 
stresses tri): 

a2 + 
0 o 2 

hydrostatic 
stress 

+[i 

?_o2, O!]oO o° 
uniaxial 

compression 

0 0 ]  
0 0 
0 (03 - a2) 

uniaxial 
tension 

= 0" 2 • 

0 O 3 
total 
stress 

Any state of stress can be decomposed into these three 
parts. 

The shear stress on any plane arises only from the 
uniaxial compression and the uniaxial tension. These 
contribute components, here called ~'l and r3, respec- 
tively, to the total shear stress acting on the plane. 
Because the uniaxial compression and tension are 
axisymmetric about the al and a3 directions, ~-i and r3 
must lie in the directions of the orthogonai projections of 
at and 03 upon the plane (Fig. 2a). The ~'l arrow is drawn 
directed away from the al point in Fig. l(c) because the 
uniaxial compression pushes the hangingwall material 
away from the direction of the upper-hemisphere al 
point. Inversely, the ~'3 arrow is directed toward the a3 
point, because the uniaxial tension pulls the hangingwall 
material toward the direction of upper-hemisphere o 3 
point. 

Note that vectors rl ,  ~'3 and ~'in Fig. l(c) & (d) are not 
plotted stereographically. They are ordinary scaled rep- 
resentations of the vector quantities, drawn in the plane 
of the tracing paper, which represents the (now horizon- 
tal) plane of interest. 

The magnitude given for ~'t can be understood by 
imagining a right circular cylinder of material, of unit 
circular area, delivering a force (el - a2) to the plane 
and intersecting it in an ellipse of area 1/cos a (Fig. 2b). 
This is the force arising from the uniaxial compression. 
It gives rise to a stress on the plane equal to the force 
divided by the area of the ellipse or (at - a,) cos a. This 
stress is not r l ,  however, because it is directed in the Ol 
direction, the direction of the uniaxial compression. ~-1 is 
its component acting parallel to the plane and is given by 
(01 - cr2)cos a times an additional sin a factor. The 
magnitude given for ~'3 is derived in a similar way. 

The normal stress on the plane arising from the uni- 
axial compression is the above stress acting in the 01 
direction (01 - 02)cos a, times an additional cos a factor 
which resolves it into the direction of P. This is always a 
compressive (positive) contribution to the total normal 
stress on the plane. The normal stress arising from the 
uniaxial tension, on the other hand, is always a tensile 
(negative) contribution. It is derived in the same way 
and is (a 3 - a2)cos b cos b. The total normal stress on the 
plane is then the sum of these two contributions, plus the 
normal stress 02 contributed by the hydrostatic com- 
ponent of the stress tensor. 

DISCUSSION 

The construction is easiest to explain and learn using 
the upper-hemisphere projection. Once the principles 
are understood however, the usual lower-hemisphere 
projection may be preferred. The procedure is the same, 
except that one convention has to be reversed, Either the 
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r t and % arrows are drawn in opposite directions (I'~ 
toward or, ~'3 away from o3) or the shear-sense is inter- 
preted as footwaU-relative-to-hangingwall. 

The rotation steps (Figs. lb & e) can be eliminated if 
desired by using the stereovectors of De Paor (1979). 
These permit representation and addition of rt and r3 in 
their original geographic orientations. I find however 
that the scaling steps necessary for using stereovectors in 
this application are more time-consuming than the rota- 
tion steps they replace. 

The unpublished method of Etchecopar (1984) is 
similar to the present one in two respects. The original 
stress state is reduced by separating out a hydrostatic 
component equal to one of the principal stresses, and 
stress vectors acting on the fault plane are summed 
graphically on the projection paper. However, Etcheco- 
par subtracts a hydrostatic component equal to 03 instead 
of my o2, and sums vectors representing components of 
the total stress on the plane. His construction places two 
principal stress directions horizontal for the vector sum- 
mation, where mine puts the plane horizontal. However 
the two methods give identical results, and Etchecopar's 
method could be modified slightly to yield the normal 

and shear stress magnitudes as well as the shear stress 
direction. 

The three-way decomposition of a general stress state 
into a hydrostatic component and two orthogonal, uni- 
axial components is easier to understand geometrically 
than the usual two-way decomposition into a mean stress 
and a deviator. It may therefore find further applica- 
tions. 
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